

MITS4002

OBJECT-ORIENTED SOFTWARE

DEVELOPMENT

Project (25%)

Tattslotto

50% deduction for Late Submission within one week

0 mark for Late Submission more than one week

0 mark for duplicated Submission or Shared Work

You will be marked based on your submitted zipped file on Moodle. You are

most welcome to check your file with your lab tutor before your submission.

No excuse will be accepted due to file corruption, absence from lecture or lab

classes where details of lab requirements may be given.

Please make sure that you attend Lecture EVERY WEEK as low

attendance may result in academic penalty or failure of this unit.

MITS4002 Project

Copyright © 2015-2019 VIT, All Rights Reserved. Page 2

Programming Project

Part 1: Arrays & Inheritance
Submission deadline: 5 pm, Monday, Lesson 12

Marks: The project is assessment for 25% of final mark for the subject. The project is

composed of two parts: Part 1 and Part 2.

Problem Description

This project is based on the design, and implementation in Java, of the seven different

Lottery games being Saturday Tattslotto, Oz Lotto and Powerball.

Details of these games can be found at http://www.thelott.com

In Part 1 of the project, you are asked to use arrays and inheritance to code versions of

these games and in Part 2 to create an appropriate GUI that writes to a report file.

Note: GAMBLING can be a serious problem for some people.

Your lecturer DOES NOT encourage you to gamble.

Summary of Some of the Lottery Games

(From the Help pages of the above web site)

Game Day Description

Tattslotto Saturday 45 balls numbered 1 to 45, from which 8 balls are randomly

selected. The first 6 balls are the winning numbers and the last two

balls drawn are the supplementary numbers.

Oz Lotto Tuesday 45 balls numbered 1 to 45, from which 9 balls are randomly

selected. The first 7 balls are the winning numbers and the last two

balls drawn are the supplementary numbers.

Powerball Thursday 35 balls numbered 1 to 35 from which 7 are randomly selected. An

eighth ball, the Powerball, is then drawn from a separate machine

containing 20 balls numbered 1 to 20.

You will notice from your research and examination of the table that all games have several

things in common.

All games

• have a name,

• run on a day of the week

• have a set of randomly generated numbers.

Also, each of the randomly generated numbers have a minimum and maximum possible value,

for example: For Powerball, the minimum value is 1 and the maximum value is 35.

An abstract class, LuckyGame can be used to represent the generic concept of a game of

chance. A suitable partial design is shown in the following UML diagram. In the UML diagram:

• The LuckyGame class represents the generic concept of a game of chance and

therefore, is to be declared as an abstract class. It contains two abstract methods

MITS4002 Project

Copyright © 2015-2019 VIT, All Rights Reserved. Page 3

setNumberOfRandoms() and collectUserInput (String input). The LuckyGame
class also contains an array of String which is used to record the randomly generated

numbers used by each object of LuckyGame type.

• The class TattslottoGame is a LuckyGame and it thus should implement code for

LuckyGame’s two abstract methods as well as its own constructor and any other

methods.

• The games SaturdayTattslotto and Oz Lotto are all instances of the class

TattslottoGame.

• You can implement the remaining class games in any manner you believe appropriate.

For example, class PowerBallGame can be implemented using either using

o Option 1: the class PowerBallGame is a LuckyGame and thus should

implement code for LuckyGame’s two abstract methods as well its own

constructor and other methods.

o Option 2: the class PowerBallGame is a TattslottoGame and thus should

implement code for its own constructor and other methods.

• You have been provided with some code for the class TestGames, which is a text-based

application used to create instances of games and test all of their respective behaviours.

• To collect user input for all games, a class UserInput is needed. It should collect user

input and deal with any problems in the input, such as repeat numbers or numbers outside

the possible range of values.

MITS4002 Project

Copyright © 2015-2019 VIT, All Rights Reserved. Page 4

UML Diagram

MITS4002 Project

Copyright © 2015-2019 VIT, All Rights Reserved. Page 5

Code for TestGames

// A class that tests the instances of each class of game

//***

class TestGames

{ public static void main (String [] args)

 {

 final int NO_OF_GAMES = 7 ;

 LuckyGame [] games = new LuckyGame [NO_OF_GAMES];

 TattslottoGame myGame = new TattslottoGame

("Tattslotto", "Saturday", 1 , 45) ;

 TattslottoGame OzLotto = new TattslottoGame ("OZ

Lotto", "Tuesday", 1, 45) ;

 TattslottoGame WedsLotto = new TattslottoGame (

"Tattslotto", "Wednesday", 1, 40) ;

 Tatts2Game tatts2 = new Tatts2Game ("Tatts2",

"everyday", 1 , 99) ;

 PowerBallGame powerBall = new PowerBallGame

("PowerBall", "Thursday", 1 , 45) ;

 ……………………………………………………………………………………..// Super 66

instance

 ……………………………………………………………………………..// Pools instance

 games[0] = myGame ;

 games[1] = OzLotto ;

 games[2] = WedsLotto ;

 games[3] = tatts2 ;

 games[4] = powerBall ;

 ……………………………………………………………………………………..// Super 66

instance

 ……………………………………………………………………………..// Pools instance

 for (int i = 0 ; i < NO_OF_GAMES ; i++)

 { System.out.print

("\n\n***\n");

 System.out.print ("Input your numbers for " +

games[i].getDay() + " " + games[i].getName() + " :- ") ;

 String input = Keyboard.readString() ;

 games[i].collectUserInput(input);

 System.out.println (games[i]) ;

 }// end for

 }//end main

MITS4002 Project

Copyright © 2015-2019 VIT, All Rights Reserved. Page 6

Sample output

An example of some output from a run of TestGames. NOTE: ALL OUTPUTS ARE ONLY

SUGGESTIONS and should be used as a guide to your implementations.

Input your numbers for Saturday Tattslotto :- 1 2 3 3 4 78 1 5 6

Invalid input

Saturday Tattslotto numbers are:

31 29 1 6 10 41 supplementary numbers: 25 38

6 user picks between 1 and 45 are

1 2 3 4 5 6

No. of winners 2 + 0 supps match

Input your numbers for Tuesday OZ Lotto :- 1 2 3 4 5 6 7

Tuesday OZ Lotto numbers are:

2 29 19 21 36 31 40 supplementary numbers: 5 35

7 user picks between 1 and 45 are

1 2 3 4 5 6 7

No. of winners 1 + 1 supps match

Input your numbers for Thursday PowerBall :- 1 2 2 3 4 5 5

Invalid input

The user chosen powerball is 5

Thursday PowerBall numbers are:

1 32 34 5 35 33 and the POWERBALL is:- 5

7 user picks between 1 and 35 are

1 2 3 4 5 6 7 and the user chosen POWERBALL is:- 5

No. of winners 2 and you have the POWERBALL etc…..

MITS4002 Project

Copyright © 2015-2019 VIT, All Rights Reserved. Page 7

Programming Project

Part 2: Graphical User Interfaces/Applets & Files & Exceptions
Submission deadline: 5 pm, Monday, Lesson 12

In Part 1 of the project, you are asked to use arrays and inheritance to code versions of 7

Lottery games. In Part 2, using swing classes wherever possible, you need to create an applet

for players. The applet should allow a player to choose and run a game of their choice and find

out the results of their game. Each time a game is played, the applet writes information about

the game to a file called report.txt. This information would be similar to that shown as sample

output for Part 1.

For example,

report.txt

Saturday Tattslotto numbers are:

31 29 1 6 10 41 supplementary numbers: 25 38

6 user picks between 1 and 45 are

1 2 3 4 5 6

No. of winners 2 + 0 supps match

If there are any problems creating this file, then the applet reports the problem to the user.

NOTE: It is not expected that you should need to rewrite any of the classes from Part 1 of the

Project. Rather you will create instances of the relevant classes when you need them for

Part 2. The application for this project should create at least one new class LuckyGameApplet,
however a good design should divide the computational workload and

create/use classes where needed. You may even decide to use Threads and create animation!

Applet Appearance

The design of the applet’s appearance is totally up to you; the more colourful and well

organised, the better (use layout managers). Choose components that reduce user error, e.g.,

use check boxes or radio buttons when asking the user to choose the game they wish to play.

As the designer, the functionality of the applet is also up to you, as long as the basic problem

description is covered. Feel free to add any extra features that you feel are useful. For

instance, you may want to add a quick pick selection for the player, or continually add data to

the file over a number of games, run statistics of the games played, etc., etc.

It is necessary to draw a component hierarchy for your final Applet design.

MITS4002 Project

Copyright © 2015-2019 VIT, All Rights Reserved. Page 8

Submission Details

Submission deadline: 5 pm, Monday Lesson 12

Attach the following page to the front of your submission and submit all materials to your

lecturer.

What You Have to Submit

Each student submits

1. A document detailing the design of your solution in as much detail. It should include an

updated UML diagram of the inheritance hierarchy as well as the component hierarchy

for the applet’s appearance

2. The code for each class in your design. Each class listing should be fully documented

commencing with a heading that includes your name, student number, date written,

and lecturer’s name, along with a brief description of the class. At the start of each

method, there should be a comment clearly describing what the method does.

3. A readme.doc file with information on how to run your program. Include any extra

information about your design and program that you wish the marker to know.

4. A word document with evidence of trial runs of your program, i.e. screen printouts of the

results where you have tested all the features of your code.

5. Put 1, 2 ,3 and 4 together in one zipped folder. Submit this zipped folder to Moodle

Project Grading

Programs are graded on a 100 marks scale. The marks will be assigned as follows:

• 10 marks- Program meets specification and is OOP in design. Extra functionality is

encouraged and rewarded in these marks.

• 5 marks – Inheritance hierarchy

• 5 marks – Component hierarchy of the LuckyGameApplet class

• 5 marks – Evidence of error checking in code, trial runs and screen outputs.

MITS4002 Project

Copyright © 2015-2019 VIT, All Rights Reserved. Page 9

MITS4002 – Project

Student full name:

Student ID:

Markers Guideline

Program meets specification and is OOP in design

10 marks

Inheritance hierarchy

5 marks

Component hierarchy of the LuckyGameApplet class

5 marks

Error checking.

Evidence of trial runs & output

5 marks

Total

25 marks

